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Consider

dX(t) = b(t,X(t))dt+ σ(t,X(t))dW (t),

where b ∈ Lqp := Lq(R+;L
p(Rd)) with p, q > 1, d

p +
2
q < 1.

I Krylov-Röckner (2005), existence and uniqueness of strong so-

lution when σ(t, x) = Id.

I Zhang, X.C. (2005, 2011), considered the case of multiplicative

noise.

I Basic methods: Krylov’s estimate and Zvonkin’s tranform



• Wang, F.Y. (2017) Ann. Probab. used Harnack inequality

to discuss the nonexplosion of SDEs with singular drifts and

its existence, uniqueness and regularity of invariant probability

measures.

• Wang, F.Y. (2018) PTRF, extended this method to deal with

degenerate SDEs and path-dependent SDEs.

• The drift b(t, x) may not belong to Lqp or satisfy any Lyapunov

type condition.

Example

b(t, x) =
{ ∞∑
n=1

log
(
1 +

1

|x− n|2
)} 1

2 − x, x ∈ R. (E1)



Euler-Maruyama’s approximation

Numerical approximation plays important role in the application of

SDEs.

• Under global Lipschitz condition, Strong convergence of Euler-

Maruyama’s (EM’s) approximation, cf. Kloeden and Platen

(1992).

• Under one-sided Lipschitz condition, Strong convergence of

EM’s approximation, cf. Higham, Mao, Stuart (2002).

Generally, the linear growth condition plays a crucial role, because

♠ Hutzenthaler, Jentzen, Kloeden (2011, 2013) showed that EM’s

approximation may diverge to∞ both in strong and weak sense

if the coefficients grow superlinearly.



Convergence of EM’s approximation

The convergence of EM’s approximation has been investigated for

various criteria:

• Convergence of expectation of functionals of solutions of SDEs,

cf. Talay and Tubaro (1990)

• Convergence of distribution function, cf. Bally and Talay (1996)

• Convergence in Wasserstein distance, cf. e.g. Alfonsi et al.

(2014)



Convergence of EM’s approximation

• Yan (2002) Ann. Probab. possibly discontinuous coefficients

but satisfying linear growth condition;

• Kohatsu-Higa et al. (2012), bounded Hölder continuous drifts;

• Ngo and Taguchi (2018), Hölder continuous drifts and satisfy-

ing the sub-linear growth condition.

In this talk, we shall study the weak convergence in the form

E[f(Xδ(t))]→ E[f(X(t))], as δ → 0, ∀ bounded f,

and in the Wasserstein distance.



Two main issues

First, since singular b(t, x) may not be well-defined for every (t, x) ∈
R+×Rd, in order to define the EM’s approximation for every initial

value, certain regularization is needed. For example, consider the

drift b(t, x) defined previous in (E1), we define

Z(t, x) =
{ d∑
n=1

log
(
1 +

1

|x− n|2
)} 1

2
, ψε = ε−d

(
ψ(x/ε)

)
,

where ψ ∈ C∞0 (Rd;R+) with
∫
ψ(y)dy = 1.

bε(t, x) =
(
Z(t, ·) ∗ ψε

)
(x)− x.

Correspondingly, define dXε(t) = bε(t,Xε(t))dt+ dW (t).

♠ Estimate the difference between X(t) and Xε(t).



Two main issues

For the first problem, when b and b̃ are in Lqp,

Zhang, X.C. (2016) Ann. Appl. Probab. has proved

E
[

sup
0≤t≤T

∣∣Xb(t)−X b̃(t)
∣∣2] ≤ C‖b− b̃‖2Lqp .

I This result is based on Zvonkin’s transform, which cannot deal

with b given by (E1).

I This result cannot deal with degenerate SDEs.
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Two main issues

Second, define EM’s approximation

dXδ
ε (t) = bε([t/δ]δ,X

δ
ε ([t/δ]δ))dt+ dW (t).

♠♠ Estimate the difference between Xε(t) and Xδ
ε (t).
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Notations and Assumptions

Consider the SDE

dX(t) = b(t,X(t))dt+ σdW (t), X(0) = x0 ∈ Rd, (E2)

where (W (t)) d-dim B.M., b : R+ × Rd → Rd, σ ∈ Rd×d.

(Hσ) ∃ λ > 0 s.t. λ−1|x|2 ≤ |σx|2 ≤ λ|x|2, ∀x ∈ Rd.

For V ∈ C2(Rd), define

µ0(dx) = e−V (x)dx, Z0 = −
d∑

i,j=1

(
aij∂jV

)
ei,

where {ei}di=1 canonical orthonormal basis of Rd, (aij) = σσ∗.



Notations and Assumptions

Define a class of functions:

V =

{
V ∈C2(Rd)

∣∣∣ µ0(Rd)=1, ∃K0 > 0,

|Z0(x)−Z0(y)| ≤ K0|x−y| ∀x, y ∈ Rd

}
.

The Wasserstein distance between two probability measures µ and

ν on Rd:

W1(µ, ν) = inf
{∫

Rd×Rd
|x− y|π(dx, dy); π ∈ C (µ, ν)

}
,

where C (µ, ν) the collection of all couplings of µ and ν.



Theorem 1. Let (X̃(t)) be the solution to the following SDE:

dX̃(t) = b̃(t, X̃(t))dt+ σdW (t), X̃(0) = x0.

Assume (Hσ) holds. Let T > 0 be given. Assume ∃ V ∈ V such that Z0,

Z(t, x) := b(t, x)− Z0(x), Z̃(t, x) := b̃(t, x)− Z0(x) satisfy:

(H1) ∃ a constant η > 2λTd such that

sup
t∈[0,T ]

µ0

(
eη|Z(t,·)|2

)
<∞, sup

t∈[0,T ]

µ0

(
eη|Z̃(t,·)|2

)
<∞.

Then, ∀ ξ > d, ∃ a constant C = C(K0, T, λ, ξ, η) such that

sup
t∈[0,T ]

W1(L (X(t)),L (X̃(t))) ≤ C
{∫ T

0

µ0(|Z − Z̃|q0ξ(s, ·))
1
ξ

(1− e−K0s)
d
ξ

ds
} 1
q0
,

where q0 = p0/(p0 − 1), p0 =
√

η
2λTd ∧ 2.



EM’s Approximation

Assume the drift b in (E2) is well-defined for every (t, x), then the

EM’s approximation of (E2) is defined by

dXδ(t) = b(tδ, Xδ(tδ))dt+ σdW (t), Xδ(0) = x0,

where tδ = [t/δ]δ for δ > 0.



EM’s Approximation

Theorem 2. Assume (Hσ) holds. T > 0 be given. Assume ∃
V ∈ V such that (t, x) 7→ Z(t, x) := b(t, x)− Z0(x) is continuous.

Suppose

(H2) ∃ η0 > 0 and η > 4λTd such that

µ0

(
eη0|Z0|2

)
<∞, sup

t∈[0,T ]
µ0

(
eη|Z(t,·)|

2
)
<∞.

Then,

lim
δ→0

E[f(Xδ(t))] = E[f(X(t))], t ∈ [0, T ],∀ f ∈ Bb(Rd),

and

lim
δ→0

W1(L (Xδ(t)),L (X(t))) = 0, t ∈ [0, T ].



Time homogeneous case

When b(t, x) = b(x) is time homogeneous, conditions (H1) and

(H2) can be replaced respectively by (H1’) and (H2’) below, and

the corresponding results are still valid.

(H1′) ∃ η > 0 such that

µ0
(
eη|Z|

2)
<∞ and µ0

(
eη|Z̃|

2)
<∞.

(H2′) ∃ η > 0 such that

µ0
(
eη|Z0|2) <∞ and µ0

(
eη|Z|

2)
<∞.

In Theorem 1, now the estimate is:

sup
t∈[0,T ]

W1(L (X(t)),L (X̃(t))) ≤ Cµ0
(
|Z − Z̃|2ξ

) 1
2ξ .



Convergence rate

Theorem 3. Suppose the conditions of Theorem 2 hold. In addition,

assume that ∃ K1, m1 > 0, α ∈ (0, 1] and a polynomially bounded

function h : Rd → R+ such that

|Z(t, x)−Z(t, y)| ≤ K1(1+|x|m1+|y|m1)|x−y|, t ∈ [0, T ], x, y ∈ Rd,

|Z(t, x)−Z(s, x)| ≤ h(x)|t− s|α, t, s ∈ [0, T ], x ∈ Rd.

Then

W1(L (Xδ(t)),L (X(t))) ≤ Cδ
1
2
∧α, t ∈ [0, T ].



Example

b(t, x) =
{ ∞∑
n=1

log
(
1 +

1

|x− n|2
)} 1

2 − x, x ∈ R. (E1)

Take V (x) = x2/2 + log(
√
2π), then µ0(dx) =

e−x
2/2

√
2π

dx, Z0(x) =

−x, and

Z(x) =
{ ∞∑
n=1

log
(
1 +

1

|x− n|2
)} 1

2
.

Then for any η > 0,

µ0

(
eη|Z|

2
)
<∞.

Let Xε(t) and Xδ
ε (t) be determined previously. Then, for every

T > 0, ξ > 1,

W1(L (Xε(t)),L (X(t))) ≤ C
(
µ0(|Z − Zε|2ξ)

) 1
2ξ ,

W1(L (Xδ
ε (t)),L (Xε(t))) ≤ Cδ

1
2 , t ∈ [0, T ].
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Main results: degenerate case

Consider

dX(1)(t) = X(2)(t)dt,

dX(2)(t) = b(t,X(1)(t), X(2)(t))dt+ σdW (t).

b : R+ × Rd × Rd → Rd. Assume b is well-defined everywhere.

Consider its EM’s approximation:

dX
(1)
δ (t) = X

(2)
δ (t)dt,

dX
(2)
δ (t) = b(tδ, X

(1)
δ (tδ), X

(2)
δ (tδ))dt+ σdW (t),



Main results: degenerate case

Theorem

Let T > 0 be given. Assume that (Hσ) holds and there exists

V ∈ V such that (t, x1, x2) 7→ Z(t, x1, x2) := b(t, x1, x2)−Z0(x2)

is continuous. In addition, assume that

(A2) there exist constants η0 > 0, η > 4λTd such that

µ0
(
eη0|Z0|2) <∞ and sup

t∈[0,T ]
µ0
(

sup
x1∈Rd

eη|Z(t,x1,·)|
2)
<∞.

Then,

lim
δ→0

W1

(
L (X

(1)
δ (t), X

(2)
δ (t)),L (X(1)(t), X(2)(t))

)
= 0.



Key point of the proof

Introduce a reference process

dY (t) = Z0(Y (t))dt+ σdW (t).

Then, use (Y (t)) to present a new representation of the studied

SDE and its EM’s approximation:

dY (t) = b(t, Y (t))dt+ σ
(
dW (t)− σ−1b(t, Y (t))dt+ σ−1Z0(Y (t))dt

)
= b(t, Y (t))dt+ σdŴ1(t),

(E3)

Define a new probability measure

Q1 := exp
[ ∫ T

0
〈σ−1(Z(s, Y (s))),dW (s)〉−1

2

∫ T

0
|σ−1(Z(s, Y (s)))|2ds

]
P,

if

E exp
[1
2

∫ T

0
|σ−1(Z(s, Y (s)))|2ds

]
<∞.



Key point of the proof

Similarly, rewrite

dY (t) = b(tδ, Y (tδ))dt+ σdŴ2(t), (E4)

where

Ŵ2(t) =W (t) +

∫ t

0
σ−1(Z0(Y (s))− b(sδ, Y (sδ)))ds, t ∈ [0, T ].

Define a new probability measure

Q2 = exp
[
−
∫ T

0
〈σ−1(Z0(Y (s))− b(sδ, Y (sδ))), dW (s)〉

− 1

2

∫ T

0
|σ−1(Z0(Y (s))− b(sδ, Y (sδ)))|2ds

]
P,

if

E exp
[1
2

∫ T

0
|σ−1(Z0(Y (s))− b(sδ, Y (sδ)))|2ds

]
<∞.



Key point of the proof

Lemma

Let G : Rd → R+ be a measurable function. If there exists a

constant η > 0 such that µ0(e
ηG) <∞, then, for any β, T > 0,

E
[
eβ

∫ T
0 G(Y (s))ds

]
<∞ and E

[
eβ

∫ T
0 G(Y (sδ))ds

]
<∞.



Key point of the proof

|EPf(X(t))− EPf(Xδ(t))| = |EQ1f(Y (t))− EQ2f(Y (t))|

=
∣∣∣EP

{
f(Y (t))

(dQ1

dP
− dQ2

dP

)}∣∣∣
≤ ‖f‖∞EP

∣∣∣dQ1

dP
− dQ2

dP

∣∣∣.



Thank You !

Email: shaojh@tju.edu.cn
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