Weak convergence of Euler-Maruyama's approximation for SDEs under integrability condition

Jinghai Shao

Center for Applied Mathematics, Tianjin University

July 16-20, 2018 @ Sichuan University, Chengdu

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background and setup

- Ø Main results: Non-degenerate Case
- **3** Main results: Degenerate Case

1 Background and setup

2 Main results: Non-degenerate Case

3 Main results: Degenerate Case

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

Consider

$$dX(t) = b(t, X(t))dt + \sigma(t, X(t))dW(t),$$

where $b \in \mathbb{L}_p^q := L^q(\mathbb{R}_+; L^p(\mathbb{R}^d))$ with p, q > 1, $\frac{d}{p} + \frac{2}{q} < 1$.

- ► Krylov-Röckner (2005), existence and uniqueness of strong solution when σ(t, x) = Id.
- Zhang, X.C. (2005, 2011), considered the case of multiplicative noise.

うつん 川 エー・エー・ エー・シック

Basic methods: Krylov's estimate and Zvonkin's tranform

- Wang, F.Y. (2017) Ann. Probab. used Harnack inequality to discuss the *nonexplosion* of SDEs with singular drifts and its existence, uniqueness and regularity of invariant probability measures.
- Wang, F.Y. (2018) PTRF, extended this method to deal with degenerate SDEs and path-dependent SDEs.
- The drift b(t, x) may not belong to \mathbb{L}_p^q or satisfy any Lyapunov type condition.

Example

$$b(t,x) = \left\{ \sum_{n=1}^{\infty} \log\left(1 + \frac{1}{|x-n|^2}\right) \right\}^{\frac{1}{2}} - x, \quad x \in \mathbb{R}.$$
(E1)

Numerical approximation plays important role in the application of SDEs.

- Under global Lipschitz condition, Strong convergence of Euler-Maruyama's (EM's) approximation, cf. Kloeden and Platen (1992).
- Under one-sided Lipschitz condition, Strong convergence of EM's approximation, cf. Higham, Mao, Stuart (2002).

Generally, the linear growth condition plays a crucial role, because

♠ Hutzenthaler, Jentzen, Kloeden (2011, 2013) showed that EM's approximation may diverge to ∞ both in strong and weak sense if the coefficients grow superlinearly.

The convergence of EM's approximation has been investigated for various criteria:

- Convergence of expectation of functionals of solutions of SDEs, cf. Talay and Tubaro (1990)
- Convergence of distribution function, cf. Bally and Talay (1996)
- Convergence in Wasserstein distance, cf. e.g. Alfonsi et al. (2014)

- Yan (2002) Ann. Probab. possibly discontinuous coefficients but satisfying linear growth condition;
- Kohatsu-Higa et al. (2012), bounded Hölder continuous drifts;
- Ngo and Taguchi (2018), Hölder continuous drifts and satisfying the sub-linear growth condition.

In this talk, we shall study the weak convergence in the form

 $\mathbb{E}[f(X_{\delta}(t))] \to \mathbb{E}[f(X(t))], \quad \text{as } \delta \to 0, \quad \forall \text{ bounded } f,$

and in the Wasserstein distance.

(日) (日) (日) (日) (日) (日) (日)

First, since singular b(t, x) may not be well-defined for every $(t, x) \in \mathbb{R}_+ \times \mathbb{R}^d$, in order to define the EM's approximation for every initial value, certain regularization is needed. For example, consider the drift b(t, x) defined previous in (E1), we define

$$Z(t,x) = \left\{ \sum_{n=1}^{d} \log\left(1 + \frac{1}{|x-n|^2}\right) \right\}^{\frac{1}{2}}, \quad \psi_{\varepsilon} = \varepsilon^{-d} \left(\psi(x/\varepsilon)\right),$$

where $\psi \in C_0^{\infty}(\mathbb{R}^d; \mathbb{R}_+)$ with $\int \psi(y) dy = 1$.

$$b_{\varepsilon}(t,x) = (Z(t,\cdot) * \psi_{\varepsilon})(x) - x.$$

Correspondingly, define $dX_{\varepsilon}(t) = b_{\varepsilon}(t, X_{\varepsilon}(t))dt + dW(t)$.

• Estimate the difference between X(t) and $X_{\varepsilon}(t)$.

うつん 川 エー・エー・ エー・シック

For the first problem, when b and \tilde{b} are in \mathbb{L}_p^q , Zhang, X.C. (2016) Ann. Appl. Probab. has proved

$$\mathbb{E}\left[\sup_{0\leq t\leq T}\left|X^{b}(t)-X^{\tilde{b}}(t)\right|^{2}\right]\leq C\|b-\tilde{b}\|_{\mathbb{L}^{q}_{p}}^{2}.$$

- ▶ This result is based on Zvonkin's transform, which cannot deal with *b* given by (E1).
- This result cannot deal with degenerate SDEs.

うつん 川 エー・エー・ エー・シック

For the first problem, when b and \tilde{b} are in \mathbb{L}_p^q , Zhang, X.C. (2016) Ann. Appl. Probab. has proved

$$\mathbb{E}\left[\sup_{0\leq t\leq T}\left|X^{b}(t)-X^{\tilde{b}}(t)\right|^{2}\right]\leq C\|b-\tilde{b}\|_{\mathbb{L}^{q}_{p}}^{2}.$$

- This result is based on Zvonkin's transform, which cannot deal with b given by (E1).
- This result cannot deal with degenerate SDEs.

Second, define EM's approximation

$$dX_{\varepsilon}^{\delta}(t) = b_{\varepsilon}([t/\delta]\delta, X_{\varepsilon}^{\delta}([t/\delta]\delta))dt + dW(t).$$

\diamond \diamond Estimate the difference between $X_{\varepsilon}(t)$ and $X_{\varepsilon}^{\delta}(t)$.

Background and setup

Main results: Non-degenerate Case

3 Main results: Degenerate Case

Consider the SDE

$$dX(t) = b(t, X(t))dt + \sigma dW(t), \quad X(0) = x_0 \in \mathbb{R}^d, \quad (E2)$$

where (W(t)) d-dim B.M., $b : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$, $\sigma \in \mathbb{R}^{d \times d}$. $(H_{\sigma}) \exists \lambda > 0 \text{ s.t. } \lambda^{-1} |x|^2 \leq |\sigma x|^2 \leq \lambda |x|^2$, $\forall x \in \mathbb{R}^d$. For $V \in C^2(\mathbb{R}^d)$, define

$$\mu_0(\mathrm{d}x) = \mathrm{e}^{-V(x)} \mathrm{d}x, \quad Z_0 = -\sum_{i,j=1}^d \left(a_{ij}\partial_j V\right) e_i,$$

where $\{e_i\}_{i=1}^d$ canonical orthonormal basis of \mathbb{R}^d , $(a_{ij}) = \sigma \sigma^*$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Define a class of functions:

$$\mathscr{V} = \left\{ V \in C^2(\mathbb{R}^d) \middle| \begin{array}{c} \mu_0(\mathbb{R}^d) = 1, \ \exists K_0 > 0, \\ |Z_0(x) - Z_0(y)| \le K_0 |x - y| \ \forall x, y \in \mathbb{R}^d \end{array} \right\}.$$

The Wasserstein distance between two probability measures μ and ν on \mathbb{R}^d :

$$W_1(\mu,\nu) = \inf \bigg\{ \int_{\mathbb{R}^d \times \mathbb{R}^d} |x-y| \, \pi(\mathrm{d} x,\mathrm{d} y); \ \pi \in \mathscr{C}(\mu,\nu) \bigg\},\,$$

where $\mathscr{C}(\mu, \nu)$ the collection of all couplings of μ and ν .

Theorem 1. Let $(\widetilde{X}(t))$ be the solution to the following SDE:

$$\mathrm{d}\widetilde{X}(t) = \widetilde{b}(t,\widetilde{X}(t))\mathrm{d}t + \sigma\mathrm{d}W(t), \quad \widetilde{X}(0) = x_0$$

Assume (H_{σ}) holds. Let T > 0 be given. Assume $\exists V \in \mathscr{V}$ such that Z_0 , $Z(t,x) := b(t,x) - Z_0(x)$, $\widetilde{Z}(t,x) := \widetilde{b}(t,x) - Z_0(x)$ satisfy:

(H1) \exists a constant $\eta > 2\lambda T d$ such that

$$\sup_{t \in [0,T]} \mu_0 \left(e^{\eta |Z(t,\cdot)|^2} \right) < \infty, \ \sup_{t \in [0,T]} \mu_0 \left(e^{\eta |\widetilde{Z}(t,\cdot)|^2} \right) < \infty.$$

Then, $\forall \ \xi > d$, \exists a constant $C = C(K_0, T, \lambda, \xi, \eta)$ such that

$$\sup_{t \in [0,T]} W_1(\mathscr{L}(X(t)), \mathscr{L}(\widetilde{X}(t))) \le C \Big\{ \int_0^T \frac{\mu_0(|Z - \widetilde{Z}|^{q_0\xi}(s, \cdot))^{\frac{1}{\xi}}}{(1 - e^{-K_0 s})^{\frac{d}{\xi}}} \mathrm{d}s \Big\}^{\frac{1}{q_0}},$$

(日) (日) (日) (日) (日) (日) (日)

where $q_0 = p_0/(p_0 - 1)$, $p_0 = \sqrt{\frac{\eta}{2\lambda T d}} \wedge 2$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Assume the drift b in (E2) is well-defined for every (t, x), then the EM's approximation of (E2) is defined by

$$dX_{\delta}(t) = b(t_{\delta}, X_{\delta}(t_{\delta}))dt + \sigma dW(t), \quad X_{\delta}(0) = x_0,$$

where $t_{\delta} = [t/\delta]\delta$ for $\delta > 0$.

EM's Approximation

Theorem 2. Assume (H_{σ}) holds. T > 0 be given. Assume $\exists V \in \mathscr{V}$ such that $(t, x) \mapsto Z(t, x) := b(t, x) - Z_0(x)$ is continuous. Suppose

 $({\rm H2})\ \exists\ \eta_0>0$ and $\eta>4\lambda Td$ such that

$$\mu_0\Big(\mathrm{e}^{\eta_0|Z_0|^2}\Big)<\infty, \quad \sup_{t\in[0,T]}\mu_0\Big(\mathrm{e}^{\eta|Z(t,\cdot)|^2}\Big)<\infty.$$

Then,

$$\lim_{\delta \to 0} \mathbb{E}[f(X_{\delta}(t))] = \mathbb{E}[f(X(t))], \quad t \in [0, T], \forall f \in \mathscr{B}_b(\mathbb{R}^d),$$

and

$$\lim_{\delta \to 0} W_1(\mathscr{L}(X_{\delta}(t)), \mathscr{L}(X(t))) = 0, \quad t \in [0, T].$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

うつん 川 エー・エー・ エー・シック

When b(t,x) = b(x) is time homogeneous, conditions (H1) and (H2) can be replaced respectively by (H1') and (H2') below, and the corresponding results are still valid.

 $(\mathrm{H1}') ~\exists~ \eta > 0 ~\mathrm{such}~\mathrm{that}$

$$\mu_0 \big(\mathrm{e}^{\eta |Z|^2} \big) < \infty \quad \text{and} \quad \mu_0 \big(\mathrm{e}^{\eta |\widetilde{Z}|^2} \big) < \infty.$$

 $({\rm H2}')\ \exists\ \eta>0$ such that

$$\mu_0ig(\mathrm{e}^{\eta|Z_0|^2}ig)<\infty \quad ext{and} \quad \mu_0ig(\mathrm{e}^{\eta|Z|^2}ig)<\infty.$$

In Theorem 1, now the estimate is:

$$\sup_{t\in[0,T]} W_1(\mathscr{L}(X(t)),\mathscr{L}(\widetilde{X}(t))) \le C\mu_0 (|Z-\widetilde{Z}|^{2\xi})^{\frac{1}{2\xi}}.$$

Theorem 3. Suppose the conditions of Theorem 2 hold. In addition, assume that $\exists K_1, m_1 > 0, \alpha \in (0, 1]$ and a polynomially bounded function $h : \mathbb{R}^d \to \mathbb{R}_+$ such that

 $\begin{aligned} |Z(t,x) - Z(t,y)| &\leq K_1 (1 + |x|^{m_1} + |y|^{m_1}) |x - y|, t \in [0,T], \ x, y \in \mathbb{R}^d, \\ |Z(t,x) - Z(s,x)| &\leq h(x) |t - s|^{\alpha}, \qquad t, s \in [0,T], \ x \in \mathbb{R}^d. \end{aligned}$

Then

$$W_1(\mathscr{L}(X_{\delta}(t)), \mathscr{L}(X(t))) \le C\delta^{\frac{1}{2}\wedge\alpha}, \quad t \in [0, T].$$

Example

$$b(t,x) = \left\{ \sum_{n=1}^{\infty} \log\left(1 + \frac{1}{|x-n|^2}\right) \right\}^{\frac{1}{2}} - x, \quad x \in \mathbb{R}.$$
 (E1)

Take $V(x)=x^2/2+\log(\sqrt{2\pi}),$ then $\mu_0(\mathrm{d} x)=\frac{\mathrm{e}^{-x^2/2}}{\sqrt{2\pi}}\mathrm{d} x,$ $Z_0(x)=-x,$ and

$$Z(x) = \left\{ \sum_{n=1}^{\infty} \log\left(1 + \frac{1}{|x-n|^2}\right) \right\}^{\frac{1}{2}}.$$

Then for any $\eta > 0$,

$$\mu_0\left(\mathrm{e}^{\eta|Z|^2}\right) < \infty.$$

Let $X_\varepsilon(t)$ and $X_\varepsilon^\delta(t)$ be determined previously. Then, for every $T>0,\,\xi>1,$

$$\begin{split} W_1(\mathscr{L}(X_{\varepsilon}(t)),\mathscr{L}(X(t))) &\leq C\left(\mu_0(|Z-Z_{\varepsilon}|^{2\xi})\right)^{\frac{1}{2\xi}},\\ W_1(\mathscr{L}(X_{\varepsilon}^{\delta}(t)),\mathscr{L}(X_{\varepsilon}(t))) &\leq C\delta^{\frac{1}{2}}, \qquad t \in [0,T]. \end{split}$$

1 Background and setup

2 Main results: Non-degenerate Case

3 Main results: Degenerate Case

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

Consider

$$dX^{(1)}(t) = X^{(2)}(t)dt,$$

$$dX^{(2)}(t) = b(t, X^{(1)}(t), X^{(2)}(t))dt + \sigma dW(t).$$

 $b : \mathbb{R}_+ \times \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$. Assume *b* is well-defined everywhere. Consider its EM's approximation:

$$dX_{\delta}^{(1)}(t) = X_{\delta}^{(2)}(t)dt,$$

$$dX_{\delta}^{(2)}(t) = b(t_{\delta}, X_{\delta}^{(1)}(t_{\delta}), X_{\delta}^{(2)}(t_{\delta}))dt + \sigma dW(t),$$

うつん 川 エー・エー・ エー・シック

Theorem

Let T > 0 be given. Assume that (H_{σ}) holds and there exists $V \in \mathscr{V}$ such that $(t, x_1, x_2) \mapsto Z(t, x_1, x_2) := b(t, x_1, x_2) - Z_0(x_2)$ is continuous. In addition, assume that

(A2) there exist constants $\eta_0 > 0$, $\eta > 4\lambda T d$ such that

$$\mu_0\left(\mathrm{e}^{\eta_0|Z_0|^2}\right) < \infty \quad and \quad \sup_{t \in [0,T]} \mu_0\left(\sup_{x_1 \in \mathbb{R}^d} \mathrm{e}^{\eta|Z(t,x_1,\cdot)|^2}\right) < \infty.$$

Then,

$$\lim_{\delta \to 0} W_1 \left(\mathscr{L}(X_{\delta}^{(1)}(t), X_{\delta}^{(2)}(t)), \mathscr{L}(X^{(1)}(t), X^{(2)}(t)) \right) = 0.$$

Introduce a reference process

 $dY(t) = Z_0(Y(t))dt + \sigma dW(t).$

Then, use (Y(t)) to present a new representation of the studied SDE and its EM's approximation:

$$dY(t) = b(t, Y(t))dt + \sigma (dW(t) - \sigma^{-1}b(t, Y(t))dt + \sigma^{-1}Z_0(Y(t))dt)$$

= $b(t, Y(t))dt + \sigma d\widehat{W}_1(t),$
(E3)

Define a new probability measure

$$\begin{split} Q_1 &:= \exp\Big[\int_0^T \langle \sigma^{-1}(Z(s,Y(s))), \mathrm{d}W(s) \rangle - \frac{1}{2} \int_0^T |\sigma^{-1}(Z(s,Y(s)))|^2 \mathrm{d}s \Big] \\ &\text{if} \\ &\mathbb{E} \exp\Big[\frac{1}{2} \int_0^T |\sigma^{-1}(Z(s,Y(s)))|^2 \mathrm{d}s \Big] < \infty. \end{split}$$

Similarly, rewrite

$$dY(t) = b(t_{\delta}, Y(t_{\delta}))dt + \sigma d\widehat{W}_{2}(t), \qquad (E4)$$

where

$$\widehat{W}_{2}(t) = W(t) + \int_{0}^{t} \sigma^{-1}(Z_{0}(Y(s)) - b(s_{\delta}, Y(s_{\delta}))) \mathrm{d}s, \ t \in [0, T].$$

Define a new probability measure

$$Q_2 = \exp\left[-\int_0^T \langle \sigma^{-1}(Z_0(Y(s)) - b(s_{\delta}, Y(s_{\delta}))), \mathrm{d}W(s)\rangle - \frac{1}{2}\int_0^T |\sigma^{-1}(Z_0(Y(s)) - b(s_{\delta}, Y(s_{\delta})))|^2 \mathrm{d}s\right]\mathbb{P},$$

if

$$\mathbb{E}\exp\left[\frac{1}{2}\int_0^T |\sigma^{-1}(Z_0(Y(s)) - b(s_\delta, Y(s_\delta)))|^2 \mathrm{d}s\right] < \infty.$$

Lemma

Let $G : \mathbb{R}^d \to \mathbb{R}_+$ be a measurable function. If there exists a constant $\eta > 0$ such that $\mu_0(e^{\eta G}) < \infty$, then, for any $\beta, T > 0$, $\mathbb{E}\left[e^{\beta \int_0^T G(Y(s)) \mathrm{d}s}\right] < \infty$ and $\mathbb{E}\left[e^{\beta \int_0^T G(Y(s_{\delta})) \mathrm{d}s}\right] < \infty$.

$$\begin{split} |\mathbb{E}_{\mathbb{P}}f(X(t)) - \mathbb{E}_{\mathbb{P}}f(X_{\delta}(t))| &= |\mathbb{E}_{Q_{1}}f(Y(t)) - \mathbb{E}_{Q_{2}}f(Y(t))| \\ &= \left|\mathbb{E}_{\mathbb{P}}\left\{f(Y(t))\left(\frac{\mathrm{d}Q_{1}}{\mathrm{d}\mathbb{P}} - \frac{\mathrm{d}Q_{2}}{\mathrm{d}\mathbb{P}}\right)\right\}\right| \\ &\leq \|f\|_{\infty}\mathbb{E}_{\mathbb{P}}\left|\frac{\mathrm{d}Q_{1}}{\mathrm{d}\mathbb{P}} - \frac{\mathrm{d}Q_{2}}{\mathrm{d}\mathbb{P}}\right|. \end{split}$$

Thank You !

EMAIL: shaojh@tju.edu.cn